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Abstrakt

Recently a new interesting architecture of neural networks called “mixture
of experts” has been proposed as a tool of real multivariate approximation or
classification. It is shown that, in some cases, the underlying problem of prediction
can be solved by estimating the joint probability density of involved variables.
Assuming the model of Gaussian mixtures we can explictly write the optimal
minimum dispersion prediction formula which can be interpreted as a mixture-
of-experts network. In this way the optimization problem reduces to standard
estimation of normal mixtures by means of EM algorithm. The computational
aspects are discussed in more detail.

1 Introduction

Mixture-of-experts architecture typically consists of two parallel feedforward networks
having the same real input vector x ∈ RN : a network of “expert” units performing
prediction of some output vector y ∈ RK and a gating network which weights the
outputs of expert units to form the overall output.

The original heuristic idea was to simplify e.g. a complex problem of linear regression
by dividing the input space into smaller regions and solving separately the presumably

0Early version of the paper: Grim J., ”Mixture of experts architectures for neural networks as a
special case of conditional expectation formula.” In: Proceedings of the 1st IAPR TC1 Workshop on
Statistical Techniques in Pattern Recognition. (Pudil P., Novovičová J., Grim J. eds.). ÚTIA AV ČR,
Praha 1997, pp. 55-60.
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less complex regression tasks within the input subsets. Thus, by proper switching be-
tween the regions, the global functioning could achieve the quality of locally optimal
solutions (“local experts”). This original “divide and conquer” principle was further
generalized by introducing “soft” gating allowing for “soft” partitioning of the input
space [14] and also by considering hierarchical structures (cf. [7]). Optimization of the
mixture-of-experts networks is a difficult problem. Roughly speaking, the recently pu-
blished techniques succesfully combine EM algorithm and sofisticated gradient- and
regression methods. In practical problems the reported computational results appear to
be satisfactory (cf. [6], [8]).

From a statistical point of view the underlying problem can be formulated as a
prediction of a real random vector Y given the value x ∈ RN of a random vector X. If
the joint probability density functions P (x,y) is known then we can write the optimal
minimum-dispersion prediction formula in terms of conditional expectation

ŷ(x) = E[Y|x] =
∫

yP (y|x)dy, (1)

P (y|x) =
P (x,y)

P (x)
, P (x) =

∫
P (x,y)dy, x ∈ RN . (2)

It appears that, essentially, the optimization methods for mixture-of-experts architectu-
res locally approximate the conditional expectation (1) by means of EM algorithm com-
bined with different regression or gradient techniques.

An alternative possibility widely used in statistical decision-making is to estimate
the unknown probability density function P (x,y) and substitute the estimate in the
eqs. (2). We show that, approximating the unknown density by finite mixture of normal
components, we obtain remarkable similarity between the resulting prediction formula
and the functional description of the mixture-of-experts architecture. The involved pa-
rameters directly follow from the underlying mixture and therefore the optimization
method reduces to standard estimation of normal mixtures by means of EM algorithm.
In this sense the present approach can be viewed as a modification of probabilistic neural
networks based on distribution mixtures [4] and using information preserving transforms
[5]. 1

2 Prediction Based on Normal Mixtures

We denote z = (xT ,yT )T the compound (N+K)-dimensional column vector and assume
that the unknown probability density function P (z) can be approximated by a normal
mixture

P (z) =
∑

m∈M
wmF (z|µm, Σm), z ∈ R(N+K), (3)

where F (z|µm, Σm) are normal densities with the means µm and covariance matrices
Σm, m ∈M, M = {1, 2, . . . , M}.

1For the information preserving property and its information theoretic characterization we refer to
Vajda [10].
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Considering the following partition of µm and Σm in accordance with the component
vectors x and y

µm =

(
cm

dm

)
, Σm =

(
Am V T

m

Vm Bm

)
, (4)

we can easily verify the the well known formula for the marginal density

P (x) =
∑

m∈M
wmG(x|cm, Am), (5)

G(x|cm, Am) =
1√

((2π)N det Am)
exp{−1

2
(x− cm)T A−1

m (x− cm)}

and for the conditional probability density

P (y|x) =
∑

m∈M
γm(x)H(y|um, Um), (6)

H(y|um, Um) =
1√

((2π)K det Um)
exp{−1

2
(y − um)T U−1

m (y − um)},

whereby um and Um denote means and covariance matrices respectively

um = dm + VmA−1
m (x− cm), Um = Bm − VmA−1

m V T
m , (7)

and γm(x) are conditional weights

γm(x) =
wmG(x|cm, Am)∑
j∈M wjG(x|cj, Aj)

. (8)

Making substitution in the prediction formula (1) we obtain

ŷ(x) =
∑

m∈M
γm(x)

∫
yH(y|um, Um)dy =

=
∑

m∈M
γm(x)[dm + VmA−1

m (x− cm)]. (9)

The last eqs.(8),(9) are similar to that arising in the mixture-of-experts architecture
(cf. [8], p.705, [6], p.185, [13], [14]). The parenthesized linear expression corresponds to
the locally optimal output of the m-th expert unit and is it weighted by the expression
γm(x) produced by gating network. In terms of the original heuristic idea the “soft”
weights γm(x) divide the input space into “soft” hyperellipsoids to simplify the local
regression tasks.

The parameters of the prediction formula (9) directly follow from the estimated nor-
mal mixture (3) while other optimiztion methods usually solve (weighted) least squares
problem for each expert unit separately. For this reason, in practical problems, the
quality of results may be different because of the different criteria.
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Let us note further that, by grouping the components of the mixture P (y|x), we
obtain prediction formula which corresponds to the hierarchical mixture-of-experts ar-
chitecture. Indeed, considering a partition of the index set M

M =
⋃

j∈J
Mj, J = {1, 2, . . . , J} (10)

we may define the first- and second level weights gjm(x) and gj(x)

gjm(x) =
γm(x)

gj(x)
, gj(x) =

∑

m∈Mj

γm(x), j ∈ J (11)

and the prediction formula corresponding to a hierarchical mixture of experts

ŷ(x) =
∑

j∈J
gj(x)

∑

m∈Mj

gjm(x)[dm + VmA−1
m (x− cm)] (12)

which is similar to that of Jordan et al. [7], p.185. Obviously, in our case, this formula
is equivalent to that of the nonhierarchical mixture of experts (cf. (9)). Nevertheless,
the hierarchical structure may become advantageous and nontrivial in case of separate
solutions of the local regression subtasks.

3 Optimization of Parameters

Let us recall that all the parameters involved in the prediction formula (9) can be dedu-
ced from the mixture (3) and therefore the optimization procedure reduces to standard
estimation of a normal mixture by means of EM algorithm (cf. [1], [3], [12]). A lear-
ning algorithm can be obtained by using a sequential modification of EM algorithm (cf.
Titterington et al. [9], Chapter 6.)

Particularly let S = {z1,z2, . . .} be a finite set of |S| independent observations of
the random vector Z identically distributed according to some unknown probability
density function of the form (3). To estimate the unknown parameters we maximize
log-likelihood function

L =
1

|S|
∑

z∈S
log P (z) =

1

|S|
∑

z∈S
log [

∑

m∈M
wmF (z|µm, Σm)] (13)

by the two iterative steps of EM algorithm (cf. Grim (1996)):

E-step: ( m ∈M, z ∈ S, t = 0, 1, . . .)

h(t)(m|z) =
w(t)

m F (z|µ(t)
m , Σ(t)

m )
∑

j∈M w
(t)
j F (z|µ(t)

j , Σ
(t)
j )

, (14)

M-step: (m ∈M)

w(t+1)
m =

1

|S|
∑

z∈S
h(t)(m|z), (15)
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µ(t+1)
m =

1

|S|w(t+1)
m

∑

z∈S
zh(t)(m|z), (16)

Σ(t+1)
m =

1

|S|w(t+1)
m

∑

z∈S
(z − µ(t+1)

m )(z − µ(t+1)
m )T h(t)(m|z), (17)

The iterative equations (14) - (17) generate a nondecreasing sequence of values L(t), t =
1, 2, ... converging to a possibly local maximum of the likelihood function (13). A detailed
discussion of the convergence properties can be found e.g. in Wu [11], Titterington et
al. [9], Xu and Jordan [12] and others.

Let us note that, in case of general covariance matrices, it is alvays posible to obtain
ill conditioned matrices Σ(t+1)

m during computation. Typically, this situation would occur
whenever a deterministic functional relation is to be approximated by picewise linear
regression. To avoid numerical problems we can remove the singular components or
regularize the obtained matrices, e.g. by adding small positive constants to eigenvalues of
matrices (to preserve the covariance structure of data). However, any such manipulation
may violate the monotone behaviour of EM algorithm in the immediately following
iteration.

4 Estimation of Initial Components of Mixtures

A difficult point in application of EM algorithm is to specify the number of components
of the estimated mixture and to choose their initial parameters. This problem can be
solved by optimizing the nonparametric kernel estimates of Parzen. Let us recall that
all the good properties of Parzen estimates are guarranteed only asymptotically for
infinitely large data sets and therefore, in any practical application, the smoothing has
to be individually optimized.

In our case the kernel estimate can be interpreted as a uniformly weighted mixture
of normal densities with equal covariance matrices Σ0

P (z) =
∑

u∈S
F (z|u, Σ0)w(u), w(u) =

1

|S| , z ∈ X (18)

whereby the components are positioned at data vectors u ∈ S. For this reason the com-
ponent weights w(u) and the common covariance matrix Σ0 as a smoothing parameter
can be optimized by means of the EM algorithm.

The log-likelihood function (18) is known to atain a “singular” maximum for the
kernel density shrinking to delta function (det Σ0 → 0). This undesirable property can
simply be removed by the following modification of the criterion (18) (cf. Duin [2])

L =
∑

z∈S
log[

∑

u∈S,u6=z

F (z|u, Σ0)w(u)], w(u) =
1

(|S| − 1)
(19)

In order to maximize the criterion (19) we can modify the EM algorithm from Sec.4
again.
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E-step: (z, u ∈ S,z 6= u)

q(t)(u|z) =
F (z|u, Σ

(t)
0 )w(t)(u)

∑
u∈S,u 6=z F (z|u, Σ

(t)
0 )w(t)(u)

, (20)

M-step: ( z ∈ S)

w(t+1)(z) =
1

|S| − 1

∑

u∈S,u6=z

q(t)(z|u), (21)

Σ
(t+1)
0 =

1

|S|
∑

z∈S

∑

u∈S,u 6=z

(z − u)(z − u)T q(t)(u|z), (22)

The method makes use of the empirical fact that many component weights w(z)
tend to vanish in the course of optimization and therefore the result can be used as an
initial estimate of the approximating normal mixture.

Let us note that, applying the modified log-likelihood function (19), we cannot refer
to some known properties of the m.-l. estimates. However, this fact is of minor impor-
tance because the EM procedure above is used only to compute initial estimates of a
finite mixture.

5 Concluding remarks

In the last section the initial components of a mixture are estimated by means of a rather
complex “top down” method. In practical situations a “bottom up” solution based on
successive adding of components could be more efficient: For a given M we iterate
the EM algorithm until reasonable convergence. Then we add a new sufficiently “flat”
randomly placed component with a relatively high initial weight (e.g. wM+1 = 0.5).
Continuing computation we obtain again a monotonely converging sequence L(t) for the
new enlarged mixture. In this way there is a chance to find out the data regions not
sufficiently covered by the previous set of component densities. The increased initial
weight wM+1 helps the new component to “survive” in competition with the old well
“fitted” components. Note that, again, any interrupt of regular iterations may disturb
the monotone convergency. The adding of components may be continued until the weight
of the new component is repeatedly suppressed despite the increased initial value.

Another difficulty arises if a large number of parameters involved in the multivariate
mixture (3) is to be estimated from a limited data set S. One way is to reduce the
complexity of the mixture, e.g. by considering diagonal- or identical covariance matrices.

Acknowledgments

The present project has been supported by the Grant of the Academy of Sciences No.
A2075703, by the Grant of the Ministry of Education No. VS 96063 and partially by
the Complex research project of the Academy of Sciences of the Czech Republic No.
K1075601.

6



Reference

[1] Dempster, A.P., Laird, N.M. and Rubin, D.B. 1977. Maximum likelihood from
incomplete data via the EM algorithm. J.Roy.Statist.Soc. , Sec. B 39, pp.1–38.

[2] Duin, P.W. 1994. On the choice of smoothing parameters for Parzen estimates of
probability density functions. IEEE Trans. on Computers, C-25, No.11, pp. 1175-
1179.

[3] Grim, J. 1982. On numerical evaluation of maximum - likelihood estimates for finite
mixtures of distributions. Kybernetika, Vol.18, No.3, pp.173–190.

[4] Grim, J. 1996. Maximum Likelihood Design of Layered Neural Networks. In IEEE
Proceedings of the 13th International Conference on Pattern Recognition, pp. 85–89,
IEEE Press.

[5] Grim, J. 1996a. Design of multilayer neural networks by information preserving
transforms. In Proc. 3rd Systems Science European Congress, E. Pessa, M.B. Penna,
A. Montesanto, eds., pp. 977–982, Edizzioni Kappa, Roma 1996.

[6] Jacobs, R.A., Jordan, M.I., Nowlan, S.J. and Hinton, G.E., 1991. Adaptive mixtures
of local experts. Neural Comp., Vol. 3. pp. 79 - 87.

[7] Jordan, M.I. and Jacobs, R.A. 1994. Hierarchical mixtures of experts and the EM
algorithm. Neural Comp., Vol. 6. pp. 181–214.

[8] Ramamurti, V. and Ghosh, J., 1996. Structural adaptation in mixtures of experts.
In IEEE Proceedings of the 13th International Conference on Pattern Recognition,
pp. 704–708, IEEE Press.

[9] Titterington, D.M., Smith, A.F.M. and Makov, U.E. 1985. Statistical analysis of
finite mixture distributions, John Wiley & Sons: Chichester, Singapore, New York.

[10] Vajda, I. 1992. Theory of Statistical Inference and Information. Kluwer: Boston.

[11] Wu, C.F.J., 1983. On the convergence properties of the EM algorithm. Ann. Statist.,
Vol. 11, pp. 95–103.

[12] Xu, L. and Jordan, M.I., 1996. On convergence properties of the EM algorithm for
Gaussian mixtures. Neural Comp., Vol. 8. pp. 129–151.

[13] Xu, L., Jordan, M.I. and Hinton, G.E. 1994. A modified gating network for the
mixtures of experts architecture. In Proc. WCNN’94, San Diego, Vol. 2, pp. 405–
410.

[14] Xu, L., Jordan, M.I. and Hinton, G.E. 1995. An alternative model for mixture of
experts. In Advances in Neural Information Processing Systems, G. Tesauro, D.S.
Touretzky and T.K. Leen eds., Vol. 7. pp. 633–640, MIT Press, 1995.

7


